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E.N. Parker

Enrico Fermi Institute
University of Chicago
Chicago, Illinois

Abstract. It has yet to be established why ordinary stars possess X-ray coronas,
Detailed observations of the sun make it doubtful that the X-ray corona is
produced by the dissipation of Alfven waves. The uniform X~ray brightness over
all scales from 10* to 105 km simply does not look like a resonance phenomenon.

It is demonstrated that the arbitrary winding patterns introduced into the
bipolar magnetic fields of the X-ray corona produce discontinuities within the
field, It is suggested that the random motions of the footpoints of the field
cause the accumulation of internal strains in the field, which dissipate through
neutral point reconnection across the associated discontinuities to provide the
primary heat source for the X-ray corona. It is emphasized, however, that the
essential high resolution observations of the sun have yet to be carried out, and
until the theory is firmly established for the sun, we cannot know how to inter-
pret the X-ray emission of the sun or of other stars.

1. INTRODUCTION

The emission of X-rays is a universal property of stars, and a variety of
ideas have been invented to explain the phenomenon. The more intense X~-ray
sources require matter falling on to massive compact objects to provide the basic
source of energy. However, the ordinary star is more subtle. The energy source
can only be the convective 2zone, operating as a turbulent heat engine (Alfven,
1947; Schwarzschild, 1948; Biermann, 1948) but the means by which the energy is
transported to the outer atmosphere has proved elusive., It is obvious that the
question can be resolved only be detailed and quantitative study. It is not
sufficient to detect the phenomenon of stellar X-ray emission. It is necessary to
see the phenomenon in action, to study its detailed working. The essential ef-
fects occur on scales as small as 102 km or less. So the sun is the essential
laboratory for studying stellar X-ray emission.

It is clear from the observations of the solar corona that there are two
distinct states of the stellar corona, depending upon the connectivity of the
magnetic field. The open magnetic regions, in which the lines of force extend to
infinity, occur where the field is relatively weak (~ 10 gauss) and the gas den-
sity is low (n 10° atoms/cm®) so that there is little emitted radiation in spite
of the temperatures of 1.5-2x10 °K, These "coronal holes" continually expand
outward into space, producing the fast streams-—-and perhaps the entirety--of the
solar wind, requiring an energy input of nearly 10° ergs/cm? sec (Withbroe and
Noyes, 1977). The only known mechanism for supplying this energy is the emission
of Alfven waves by the photospheric motions and the dissipation of the waves
through phase mixing, etc. (cf. Hayvaerts and Priest, 1983; Abdelatif, 1987) over
characteristic lengths of the order of 10 Rp or more. This idea needs to be
tested quantitatively of course, beginning with the measurement of the wave
spectrum emitted at the photosphere,
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In contrast to the open magnetic regions, the closed magnetic regions,in
which the re—entrant bipolar magnetic field may be 102 gauss, are copious emitters
of X-rays. The gas is trapped in the magnetic field and cannot escape, with the
result that the temperature rises to 2-3x10°°K, and the density (from the
photosphere) builds up to 10!° atoms/cm so that the principal energy loss is
electromagnetic em1531on at X-ray frequencies. The energy consumption is ap-
proximately 10’ ergs/cm? sec (Withbroe and Noyes 1977). Rosner, Tucker, and
Vaiana (1978) have emphasized, from their analysis of the detailed observations of
the structure of the closed magnetic regions - the X-ray corona - of the sun,that
there is a direct comnection between the strength of the magnetic field and the
energy output. That is to say, as with all other aspects of stellar activity, the
X-ray emission is a magnetic phenomena. The magnetic energy density in the corona
is 20 or 30 times the thermal energy demsity.

Fortunately the observations of the sun go on to define the problem rather
closely. Studies of the widths of coronal lines (Beckers and Schneeberger, 1977;
Bruner, 1978; Cheng, Doschek, and Feldman, 1979) place an upper limit of about 20
km/sec on the rms fluid velocities in the line of sight in the X-ray corona,
severely limiting the energy that can be transported by Alfven waves. The obser-
vations also disclose the remarkable fact (cf. Rosner, Tucker and Vaiana, 1978)
that the intensity of the X—ray emission is essentially independent of the scale
of the bipolar magnetic region in which it occurs, from the small X~ray bright
points (104 km) to the normal active regions (10° km). These two constraints
restrict the theoretical possibilities for producing (i.e. heating) the X-ray
corona.

The obvious mechanism is the coronal dissipation of Alfven waves generated in
the photosphere, much as in the coronal hole. The difficulty with this idea is
that we expect waves with periods of the order of 102 sec, which have wavelengths
of 2x105 km in the corona. Yet these waves must dissipate equally and substan-
tially over scales of 10" km in the X-ray bright points and over scales of 105 km
in the normal active regions. Some authors appeal to resonance effects (cf.
Davila, 1985) and to turbulent energy cascade (Hollweg, 1984), which all requires
a broad input wave spectrum, from periods of 102 sec down to 10 sec, in order to
function equally over all scales from 10* to 105 km.

Qur own view is that the scale independence of the X-ray coronal features
does not look like a resonance phenomenon. Wave heating as the principal cause of
the corona requires too many special circumstances. It is time to look for
alternatives,

2. SMALL-SCALE STORAGE OF MAGNETIC ENERGY

Energy is continually introduced into the bipolar magnetic fields above the
surface of the sun by the random wandering of the footpoints of the field (Parker,
1983b). The individual magnetic fibrils at the photosphere are kicked about by
the granules at velocities of some fraction of a km/sec. The motions cannot be
well ordered, with the result that any given fibril spends its time wandering
among the neighboring fibrils, say with a velocity u. The flux bundle in the
corona trails out behind its wandering photospheric footpoint and meanders among
the neighboring flux bundles along the random path of the footpoint. The length
of the path traversed by the footpoint at the photosphere after a time t is ut.

Then consider the idealized situation illustrated in Fig. 1, wherein there is
a vertical uniform field e,B, , except for one wandering flux bundle whose upper
end is anchored at a horizontal plane z=L above the surface z=0 on which the
footpoint wanders at random. The region is filled with a tenuous infinitely .
conducting fluid. The vertical component B, of the field in the wandering flux
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FIG. 1 A sketch of a flux bundle whose footpoint has been displaced a distance

ut along a random path among the other flux bundles. The dashed line on
the plane z=0 indicates the track of the footpoint.

bundle 1s essentially unaffected by the inclination & of the bundle to the verti-
cal, where

tan 6 = ut/L (1)
The horizontal component of the field is

B, = B0 tan 6

(2)

= B, ut/L

0
The tension in the inclined bundle, trailing out behind the footpoint, opposes the
random walk velocity u of the footpoint with the Maxwell stress B; B /4n , 80 that
the motion of the footpoint does work on the field at a rate

W = uBj 50/41T
BS u’?t \ (3)
= ATL ergs/cm“ sec

This emergy accumulates in the field, of course. Every footpoint (i.e. every
individual fibril) is undergoing a statistically similar random walk, with the
result that W is an estimate of the average rate of energy input over the magnetic
field.

Note that, beginning with a uniform vertical field at time t=0, the rate of
energy input increases linearly with the passage of time, as the magnetic stresses

opposing the motion of the footpoint become larger. The accumulated energy in the
field 1is
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t

u(t) = OJ” dt w(t)
B2 u?t?
= —8TL ergs/cm (4)

and increases quadratically with time. For a normal active region with B0 = 10?
gauss and L = 10° cm, a random motion u = 0.5 km/sec yields

ut/L = 0.5x10-5t, (5)
W = 2x102%t ergs/cm sec (6)
U = 1x10?t*ergs/cm (7

We presume that the accumulation of emergy in the small-scale strains goes on
until either the magnetic stress opposing the footpoint motions becomes so strong
as to halt the motions, or, as seems more likely, some form of dissipation appears
that destroys the accumulating small scale strains in the field as rapidly as the
strains can be produced by the motion of the footpoints.

This, then, is the state of the bipolar magnetic fields in the sun. There is
a substantial energy stored in small-scale strains, on scales less than 10° km, as
a consequence of the convective motions at the photosphere.

3. SPONTANEOUS APPEARANCE OF DISCONTINUILTIES

Consider how the small-scale distortions introduced in a large scale bipolar
magnetic field B by the small scale (1 ¥ 10° km) motions u of the footpoints can

be dissipated in a plasma at 2-3x10° °K. The resistive diffusion coefficient n is
only 10° cm /sec (o# 10'7/sec). The characteristic dissipation time over a scale
of 103 km is 105 years. There can be significant dissipation only if the charac-
teristic gradients (curl) within the field are enormously increased above the
characteristic value B/1.

We are familiar with the potential fields of electrostatics and magnetos-
tatics in nonconducting media, in which the field is described by the single
scalar equation

Vig =0

There is a unique solution for any given distribution of @ (or 5¢/3n) over the
boundaries, and that solution is as well behaved as the boundary conditions. The
inhomogeneities introduced at the boundary decline exponentially inward from the
boundary, so that gradients B/1 introduced at the boundaries diminish into the

field,
On the other hand, a magnetic field in a highly conducting fluid of negli-
gible pressure p satisfies the familiar force~free equation (Vx&)xB=0, so that

VxB= a(r)R, (8)
and, with VeB=0, it follows that
B:Va=0. (9)

These nonlinear equations have quite different properties from the linear La-
place equation. In particular they are vector equations, so that the connectivity
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or topology of the frozen-in field plays an essential role. The result is tangen-
tial discontinuities in a field with any but the most special topologies. The
tangential discontinuity is a surface across which |B! is continuous but the
direction of B is discontinuous. The curl of the field is essentially a Dirac-
delta function at the discontinuity, providing a current sheet,

The formation of current sheets in complicated field topologies has been
developed from several directions. Syrovatsky (1966, 1978, 1981; Bobrova and
Syrovatski, 1979; Low and Hu, 1983) pointed out that a current sheet is formed
when an X-type neutral point is squashed in one direction or another. The cir-
cumstances under which the strains introduced into the field may accomplish this
feat emerge from the treatment of the simple problem of a magnetic field e; B, ,
initially uniform, extending between the boundary planes z=0 and z=L. The foot-
points at z=0 are then moved about and mixed among each other by some bounded
continuous mapping with characteristic scale 1 (<<L) so that the lines of force
are wound and interwoven among each other in their extension from z=0 to z=L. The
elementary perturbation expansion about the initial field (Parker, 1972, 1979; see
also Tsinganos, 1982) produces only those solutions that are invariant along the
initial field (3/3z =0). Van Ballegooijen (1985) has shown recently that there is
a more general perturbation solution in which a variation with z is permitted of
the special form

Sa _ Q0 24 _2u A (10)
dz Jdy 0x 09X 93y

where o is the torsion coefficient appearing in eqns. (8) and (9), and the
transverse components of the field, produced by the winding of the lines of force,
are expressed in terms of the vector potential A by

B = +Bo 0A/dy, By = -BoaA/Bx
so that
o= - (32A/9x> + 32A/3y?)

Van Ballegooijen points out that equation (10) is exactly analogous to the
two dimensional vorticity equation for the motion of an ideal inviscid fluid
described by the stream function y, so that

v, = +3y/dy, v, = -9y/ 3x

The vorticity is then

W= - (3%Y/3x? + 32y/dy?)

‘and the vorticity equation is

Sw o %w W _ 3w (11)
ot dy 9X 93X 3y

It follows that the magnetic field varies with z in the same way that the vor-
ticity varies with the passage of time. There is considerable knowledge of the
properties of two dimensional vortex flows of inviscid fluids (cf. Batchelor,
1967). 1In particular, it follows that there is a well behaved continuous solution
to (10) for any bounded continuous smooth vector potential A specified on z=0,
From this fact Van Ballegooijen asserted that the bounded continuous mapping of
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the footpoints of the field cannot produce discontinuities in the field. This
overlooks the fact that the winding and interweaving of the vortex lines is
restricted to the special form described by the vorticity equation (11) which, for
instance, does not allow braiding of three vortex filaments), whereas we are free
to introduce any arbitrary winding pattern through continuous motion of the foot-
points of the field. It can be shown by formal development of the force-free
equations (8) and (9) (Parker, 1986a,b) that discontinuities occur in o and B
unless the mapping of the footpoints is especially restricted to the vorticity
equation. The recent papers by Moffat (1985,1986) discuss the ubiquitous discon-
tinuities (vortex sheets) as a general property of the Euler equations for the
ideal inviscid fluid. Tsinganos, Distler, and Rosner (1984) develop the analogy
between the lines of force and the trajectory of a Hamiltonian system in phase
space,

In the present exposition we illustrate the spontaneous formation of a tan-
gential discontinuity with a simple example (Parker, 1987). Consider a twisted
flux bundle extending uniformly (3/5z=0) from z=0 to +L (sketched in Fig. 2) and
fitting smoothly into the ambient uniform field e,B, that surrounds it. That is
to say, the helicity of the magnetic field declines to zero at the surface of the
bundle, Indeed, we may define the surface of the bundle by the vanishing of ‘the

\LL; !_L/Jvﬁ 9 |

FIG., 2 A sketch of a twisted flux bundle extending uniformly from z=0 tq z=L
whose field fits smoothly and continuously onto the surrounding uniform
field Ba'

helicity. The twisted flux bundle is in force-free equilibrium, so that the
helical field within the twisted flux bundle can be expressed in terms of a gener-
ating function f(w), where w= (x%+ y2 )% represents distance from the axis of the
bundle. Then (List and Schliiter, 1954a,b)

B, = £(@) +%0f' (@), B, = - 40" (®)

with B falling to zero at the surface of the bundle, where £=B5. The equilibrium
field can also be described by
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B = +A/dy, By = - JA/5x, B, = Bz(A)
with

o= B; (4)

and 2 2
A, PA .
St 3t * B A)BL(A)=0

Formal examples of twisted flux tubes formed by bounded continuous rotation of the
footpoints may be found in the literature (cf. Parker, 1987)

We consider here the case where the twisted bundle is pressed between two
planes y = +h (or two other similar twisted flux bundles) so that it is squashed
into a flattened cross section, with thickness 2h and width 2w, in the manner
sketched in Fig. 3. The twisted bundle resists the squashing, of course, so that
some finite incremental pressure AP = BB(Z)/SN (where B is a number of the order of
unity) must be applied by the confining planes y = +h to squash a strongly twisted
bundle. Thus, whereas the ambient pressure is P = B,/87, the local magnetic
pressure along the midline x=0, y = +h of the flattened surface of the flux tube
is larger, P + AP = P(1+8). In moving in the x-direction away from the midline of
the flattened side, the magnetic pressure declines by AP, Equilibrium requires
that some force balance the outward thrust of this locally enhanced pressure.

FIG. 3 A sketch of the cross section of the flux bundle in Fig. 2 after being
squashed between the two planes y = +h, so that the width becomes 2w.

The cross hatched region represents the thin layer of flux at the sur-
face of the bundle, extending from the midline x=0 to x= +x,

Only the tension in the lines of force is available, in the amount B_l/énr where Bf
is the transverse component of the field at the surface of the flux tube. Then

the total pressure at the surface is (32 + B_L)/8 where B is the longitudinal
component, from which it follows that

B, + B} = BJ(1+p) (12)

Consider then a thin layer of f£lux on the surface of the twisted flux tube. The
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layer is indicated by the cross hatched area in Fig., 3. The thickness of the
layer at the midline of the flattened side (at x=0, y = +h) is Ay, so that the
tension exerted on the layer there is AyB?/4m., The enhanced pressure is AP, of

course, so that the net force in the positive x-direction exerted on the thin
layer at x=0 is

Ay(B2/4m - AP).

There is no net force in the x~direction exerted on the upper surface y=h, nor on
y=0 throughout x>w, nor at x = +x where the enhance pressure falls to zero. The
only place that AP makes itself felt is along the lower surface of the layer.
Hence the total force in the x-~direction exerted on the layer is

h-Ay
F, = Ay[AP(0,h) — B? (O,h)/4n] + s dy AP(x,y)
(o]

where the integral is along the lower surface of the layer from where it crosses
the x-axis at x=w to where it crosses the y-axis at y = h-Ay, Since Fx=0 for

equilibrium, it follows that

B2(0,h) ; h=ay
—7 =0RO,b) + s I dy aP(x,y) (13)

To estimate a lower limit on B (O,h) note that AP(x,y)>0, so that both terms
on the right hand side are positive. Hence, dropping the integral on the right
hand side it follows that

B2(0,h) > 4TAP(0,h)

(14)
=% BB}
Substituting this result into (12) yields
2 2 1
B2 < B2 (1+48) (15)
from which it follows that
B./B, > [8/(2+8)]% (16)

The point of this inequality is that B, /B, is of the order of unity, i.e. of the
order of (B/2)%. The field at the surface of the twisted flux bundle is inclined

to the z-direction by an angle} where

tani = B /Bz
1 (17)
> [B/(2+8)]7

Note that the field at the surface of the flux bundle was parallel to the
axis of the bundle (By - 0) prior to squashing the bundle. The subsequent in-
clination ¥ of the surface field to the ambient field direction depends only upon
the enhanced pressure AP = EBZ/87 applied to squash the tube. It is independent
of the initial state of twisting of the tube., Only the sign of the inclination is
obedient to the original twisting. And that is how the spontaneous tangential
discontinuity is created.
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Wherever a localized enhanced pressure is applied to a twisted flux bundle,
the field at the surface of the bundle is strongly rotated relative to the local
direction of the flux bundle . Unless the flux bundle exerting the enhanced
pressure is the mirror image of the bundle being squashed, and the two bundles are
precisely parallel wher they are in contact, the fields on either side of their
common surface take up different directions. If, then, we shuffle and intermix
the footpoints of the magnetic field in some arbitrary bounded continuous manner,
the flux bundles that make up the resulting field are twisted, wound, and inter-
woven in arbitrary patterns that produce spontaneous misalignment of the fields
across the boundaries of the local topological patterns in the winding and
wrapping. The continuous fields become discontinuous because the topology becomes
discontinuous where one twisted flux bundle is pressed against, or pulled around,
another, The discontinuity in the topology (created when twisted tubes are
pressed together) creates the discontinuity in the field direction through the
rotation described by the above examplel.

This identifies, then, where the X-type neutral points may be flattened by
the global magnetic stresses to form current sheets. The phenomenon arises spon-
taneously and unavoidably throughout any magnetic field subject to internal
winding and interweaving that does not adhere exactly to the strictures of the
"vorticity" equation. The interested reader is refered to the more formal treat-
ment of the spontaneous formation of tangential discontinuities in the field
(Parker, 198la,b, 1982, 1983a,c,d, 1986a,b, 1987).

4. FORMATION OF THE STELLAR X-RAY CORONA

We suggest that the small-scale strains introduced in the bipolar magnetic
fields above the surface of the sun (§II) are relieved by the dissipation that
arises at the tangential discontiuities that are an essential part of the force-
free equilibrium (§III), It remains for observations to establish the velocity u
with which the footpoints of the field are shuffled among each other. In view of
the observed horizontal motions of 1-3 km/sec at the visible surface of the sun we
would imagine that u is a substantial fraction of 1 km/sec, perhaps u=0.5 km/sec.

Consider, then, the requirements for heating the X-ray corona by the dissipa-
tion at the discontinuities, presumably by neutral point reconnection in one form
or another. We imagine a mean strain level in which the motion of the footpoints
does work on the field at the necessary rate W = 107 ergs/cm? sec, and the dis-
sipation relieves the strains as rapidly as they are introduced. Starting from an
initial uniform field, it follows from eqn. (6) that W reaches 107 ergs/cm sec
after a time t=0.5x105 sec for the characteristic dimensions (L=10° km) of a
normal active region. At this point eqn. (5) gives ut/L = 1/4, The local strains
in the field involve inclinations to the mean field direction by a characteristic
value of 14°, This same state is reached in an X-ray bright point (L=10" km)
after a time t=0.5x10" sec.

We suggest that the X-ray corona of the sun is produced primarily by this
effect (Parker, 1983b). It is not possible to compute the reconnection rates
associated with the power input W = 107 ergs/cm sec. We note that the rate lies
between the theoretical lower and upper limits for reconnection (Parker, 1983b).
It must be appreciated that the slower the reconnection rate, the more intense are
the small-scale strains in the field when dissipation finally rises to the input
level, and the more work is done on the field by the motions of the footpoints,

l. It is well known that a twisted flux bundle is subject to a kink instability

which serves only to produce additional tangential discontinuities at the
surface (Rosenbluth, Dagazian, and Rutherford, 1973).
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The result is a higher level of energy input to the corona. Evidently a balance
is struck when the coronal gas density rises to 10!° atoms/cm. and the Alfven
speed (which characterizes the reconnection rate) falls to 2000 km/sec. In any
case the dissipation is probably sporadic and bursty on the small-scale of the
individual discontinuities (current sheets) with widths of 107-10% cm. The ob~-
served quasi-steady X~ray coroma 1is expected to be highly active in the small.

It is obvious from this brief description of the dissipation at magnetic
discontinuities that the theory of coronal heating calls upon the smallest known
magnetic structures in the sun. Therefore, the theory cannot be regarded as
established until observations at high spatial and spectral resolution can estab~
lish the random motions of the magnetic fibrils at the photosphere and provide
direct evidence for the small-scale dissipation in the X-ray corona. Until the
observations have accomplished these tasks to some satisfactory degree, the ac-
cumulating observations of stellar X-ray emission can be treated only at the
phenomenological level. I hope that it will not be too many years before the
theory can be established, or refuted, by observations of the sun, so that we can
get on with the scientific interpretation of the fascinating stellar X-ray

observations. . .
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